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Abstract—The topological properties of peer-to-peer (P2P) overlay networks are critical factors that dominate the performance of
these systems. Several non-constant and constant degree interconnection networks have been used as topologies of many peer-to-
peer networks. The Kautz digraph is one of these topologies that have many desirable properties. Unlike interconnection networks,
peer-to-peer networks need a topology with an arbitrary order and degree, but the Kautz digraph does not possess these properties. In
this paper, we propose MOORE: the first effective and practical peer-to-peer network based on the quasi-Kautz digraph with O(logd n)

diameter and constant degree under a dynamic environment. The diameter and average routing path length, respectively, are shorter
than that of CAN, butterfly, and cube-connected-cycle, and are close to that of the de Bruijn and Kautz digraphs. The message cost
of node joining and departing operations are at most 2.5d logd n and (2.5d + 1) logd n, and only d and 2d nodes need to update their
routing tables. MOORE can achieve optimal diameter, high performance, good connectivity, and low congestion, evaluated by formal
proofs and simulations.
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1 INTRODUCTION

S Tructured peer-to-peer (P2P) networks have emerged
as a good candidate infrastructure for building novel

large-scale and robust network applications [1], [2], [3],
[4], [5], [6] in which participating peers share resources as
equals. They impose a certain topology structure on the
overlay network and control the placement of data, thus
exhibiting several unique properties that unstructured
P2P networks lack. In general, the topological proper-
ties of structured P2P networks are critical factors that
dominate the performance of these systems. The most
common concerns about topological properties are peer
degree and network diameter. The degree of a peer
denotes the number of overlay connections attached to
it. The diameter indicates the largest number of hops
that must be traversed in order to transmit a message
between any two peers in the worst case.

Several non-constant and constant degree interconnec-
tion networks have been used as the ideal topology
of structured P2P networks. The degree and diameter
increase logarithmically with respect to the order of
the network for non-constant degree interconnection
networks, such as hypercube [7] and ring digraph. The
diameter increases logarithmically with respect to the
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order of the network, whereas the degree of each node
remains fixed, regardless of the order of the network, for
constant degree interconnection networks, such as cube-
connected-cycle [8] (CCC), butterfly [5], d-dimensional
torus [7], de Bruijn [9], and Kautz digraph [10]. Among
existing structured P2P networks, Chord [2], Pastry [3],
Tapestry [11], and Kademlia [4] are based on the hyper-
cube topology, Viceroy [5] and Ulysses [12] are based on
the butterfly topology [13], Cycloid [14] is based on the
CCC topology, CAN [1] is based on the d-dimensional
torus topology, Koorde [6], Distance Halving [15], D2B
[16], ODRI [17] and Broose [18] are based on the de
Bruijn topology, and FissionE [19] is based on the Kautz
topology.

The degree of a node in the Butterfly network is four,
whereas that in Ulysses is O(logn). The degree of a node
in Viceroy or Cycloid is seven and cannot be a general
constant integer. The expected degree of a node in D2B is
constant, but its high probability bound is O(logn), ie.,
some peers would be of degree O(logn). Koorde and
distance-halving embed a de Bruijn network on a ring,
and employ equivalent connection rules. The only differ-
ence is that the node degree of distance-halving must be
two, whereas that of Koorde can be an arbitrary integer.
ODRI is another scheme based on the de Bruijn network,
whereas the details are still under investigation. Broose
is a de Bruijn version of Kademlia that was proposed to
increase the reliability of de Bruijn based structured P2P
networks. Among the known structured P2P networks,
only the degree of a node in CAN and Koorde definitely
remains fixed, and can be an arbitrary integer.

In the design of structured P2P networks, there are
two important requirements. First, P2P networks always
pursue a topology with arbitrary order and degree in
order to deal with the uncontrolled dynamic operations
of nodes, such as joining, departing and failing. Second,
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P2P networks attempt to design a topology with the
smallest diameter given n nodes and fixed degree d since
reducing the diameter can improve the performance of
structured P2P networks due to the following fact. The
P2P networks are overlay networks, in which one hop
transmission usually traverses many links and devices
in the underlying physical networks and consequently
has non-trivial overhead of delay and traffic.

It is well known that constant degree interconnection
networks can satisfy the second requirement, and the
Kautz digraph obtains the smallest diameter compared
to others. The reason is that the Kautz digraph almost
achieves the Moore bound [20], the order n of a digraph
with maximum out-degree d and diameter D meets
the constraint: n≤(dD+1−1)/(d−1) (with more details
in Section 2). Unfortunately, constant degree intercon-
nection networks impose an inherent constraint on the
number of vertices they can support. For example, the
order of a Kautz digraph must be dD−1(d + 1) for a
given degree d and any value of diameter D. In other
words, it can be one of a series of discrete integers, but
cannot cover all possible integers. The Kautz digraph
therefore cannot satisfy the first requirement, and cannot
be directly used to design a structured P2P network.
Although the generalized Kautz digraph extends the
Kautz digraph for a general number of vertices, it is
required to reconstruct the whole topology once the
number of vertices changes [21], [22]. Due to the frequent
changes of peers in P2P networks, the generalized Kautz
digraph is also not suitable for structured P2P networks.

In this paper, we design a quasi-Kautz digraph with
an arbitrary network order and node degree which can
satisfy the above two requirements and still retain the
key properties of a Kautz digraph. We then propose
MOORE: the first effective and practical P2P network
based on the quasi-Kautz digraph with O(logd n) diam-
eter and constant degree under a dynamic environment.
The diameter and average routing path are ⌈logd n

d+1+1⌉
and logd n, respectively. They are shorter than that of
CAN, butterfly, and CCC, but close to that of the de
Bruijn and Kautz digraphs. The message costs of node
joining and departing operations are at most 2.5d logd n
and (2.5d + 1) logd n, respectively. MOORE can achieve
optimal diameter, high performance, good connectivity,
and low congestion.

The main contributions of this paper are as follows:
1) We present the definition, construction procedure

and theoretical results of a quasi-Kautz digraph
with arbitrary order and node degree. It satisfies
the two important requirements and retains desir-
able properties of a Kautz digraph, such as opti-
mal diameter, constant out-degree, simple routing
scheme and low congestion.

2) We design a novel structured peer-to-peer network
based on the quasi-Kautz digraph, and a suitable
resource distribution policy, production methods of
resource and node identifier, and a shortest path
routing scheme.

3) We propose some essential algorithms to handle
the dynamic operations of nodes, such as node
joining and departing, and network expanding
and shrinking. These algorithms can preserve the
desirable structure of the backbone subnetwork
and guarantee the correctness and performance of
MOORE.

4) We evaluate the performance and cost of MOORE
through formal analysis and simulation, and com-
pare it with mainstream structured peer-to-peer
networks based on other constant degree topolo-
gies.

The rest of this paper is organized as follows: Section
2 surveys the definition and emulation methods of the
Kautz digraph. Section 3 proposes the theory of a quasi-
Kautz digraph and its construction procedure. Section
4 describes the detailed design of MOORE. Section 5
presents strategies to expand and shrink the entire topol-
ogy. Section 6 analyzes and evaluates the characteristics
of MOORE. The conclusions and future work are dis-
cussed in Section 7.

2 RELATED WORK
2.1 Kautz digraph
The topology of a structured P2P network is usually
modeled by a graph or digraph in which vertices
stand for nodes while edges represent overlay connec-
tions. Many efforts have been made to address the
degree/diameter problem, which determines the largest
graphs or digraphs of given maximum degree and given
diameter. The order n of a digraph with maximum out-
degree d and diameter D is not larger than a general
Moore bound [20], [23] as follows:

n ≤ dD + dD−1 + ...+ d2 + d+ 1 = (dD+1 − 1)/(d− 1). (1)

Many research activities related to the degree/ diame-
ter problem have proved that non-existence of digraphs
achieve the general upper bound for the parameters
d≥3 and D≥3 [24]. The best lower bound on the order
of digraphs of maximum out-degree d and diameter
D is as follows: For maximum out-degree d=2 and
diameter D≥4, n≥25×2D−4. For the remaining values of
maximum d and diameter D, a general lower bound is
n≥dD+dD−1 [20]. Among existing non-trivial digraphs,
this best lower bound is only obtained by Kautz di-
graphs defined using either an alphabet (the standard
method) or congruent arithmetic [25] as follows:

Definition using an alphabet: Let Zd = {0, 1, ..., d} be
an alphabet of d+1 letters, and ZD

d = {x1..xD−1xD |xi ∈
Zd, xi ̸= xi+1 and 1 ≤ i < D} is a Kautz identifier space
consisting of all Kautz identifiers with length D and base
d. The vertex set and arc set of the Kautz digraph are ZD

d

and E(K(d,D)) = {⟨x1x2...xD, x2, ...xDα⟩ |α ∈ Zd, α ̸=
xD}. Figure 1 plots an example of Kautz(2, 2).

Definition using congruent arithmetic [21], [22]: Let
GK(d, n) denote a generalized Kautz digraph with de-
gree d and order n, respectively. The vertex set and
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arc set of the generalized Kautz digraph are denoted
as V (GK(d, n)) = {0, ..., n − 1} and E(GK(d, n)) =
{⟨i, (−d× i− α)modn⟩ | 1 ≤ α ≤ d}.

Besides the degree/diameter problem, structured P2P
networks also focus on the order/degree problem, which
determines the smallest diameter in a digraph of order n
and maximum out-degree d. Based on the Moore bound
of the degree/diameter problem, a lower bound of the
order/degree problem can be derived as

D ≥ ⌈logd (n(d− 1) + 1)⌉ − 1.

In practice, all existing digraphs cannot achieve this
lower bound for the parameters d ≥ 3 and D ≥ 3 [24].
The best upper bound on the diameter of digraphs of
maximum out-degree d and order n is ⌈logd n

d+1 + 1⌉.
Among all existing non-trivial digraphs, the best upper
bound is only possessed by the Kautz digraph.

2.2 Emulation of Kautz digraph
The topology is incrementally extendable if its definition
allows graphs of arbitrary order and degree. According
to the above definition, the Kautz digraph is not in-
crementally extendable. The generalized Kautz digraph
can be defined for any number of vertices, but it is
also not incrementally extendable because its index of
expandability1 is too large, proportional to the number
of arcs [25]. The fundamental reason is that the general-
ized Kautz digraph requires reconstruction of the whole
topology once the number of vertices changes.

The most related research work revolves around FIS-
SIONE, which uses a Kautz graph K(2, D) as its static
topology and proposes some emulation methods of
K(2, D) to deal with the dynamic operations of nodes. It,
however, cannot support Kautz digraphs with arbitrary
degree, except degree 2, and suffers from poor lookup
performance and weak connectivity since the degree of
each peer is too small. Furthermore, the emulation meth-
ods of K(2, D) are not suitable to a general Kautz graph
K(d,D) where d>2. Thus, FISSIONE is not incrementally
extendable.

MOORE attains the best upper bound of the or-
der/degree problem mentioned above. Even the order is
an arbitrary value. However, it only works well under a
relative static or moderately dynamic environment, and
suffers from low robustness in highly dynamic environ-
ments due to maintaining topology. To address these
issues, we improved MOORE by introducing another
structured P2P network based on a balanced Kautz tree
and Kautz ring in [26]. Recently, Zhang et al. recon-
sidered the design problem of structured P2P networks
mentioned in this work, and also employed a linear di-
graph to emulate the Kautz digraph [27]. They adopted a
fully distributed manner to maintain the node identifier
space at the cost of high overhead, while MOORE prefers
centralized servers.

1. The index of expandability is the minimum number of arcs that
have to be deleted from IK(d, n+ 1) to obtain a subgraph IK(d, n).

3 QUASI-KAUTZ DIGRAPH
3.1 Definition of quasi-Kautz digraph
Let G=(V,E) be a strongly connected digraph. The
vertex set and arc set are denoted as V=V (G) and
E=E(G), respectively. An arc from vertex u to v is
denoted ⟨u, v⟩. The arc is said to be incident from vertex
u and incident on vertex v. The set of vertices incident on
vertex u is denoted as Γ−

G(u)={v∈V (G) | ⟨v, u⟩∈E(G)},
and δ−G(u)=|Γ−

G(u)| is the in-degree of vertex u. Sim-
ilarly, the set of vertices incident from u is denoted
as Γ+

G(u)={v∈V (G) | ⟨u, v⟩∈E(G)}, and δ+G(u)=|Γ
+
G(u)| is

the out-degree of vertex u.
Given a Kautz digraph K(d,D), we construct an arc

set E′∈E(K(d,D)) such that each vertex of K(d,D)
appears as the head and tail of at least one arc of E′,
where |E′|=n and dD+dD−1<n<dD+1+dD.

Definition 1: A digraph of fixed out-degree d and order
n, IK(d, n), is a quasi-Kautz digraph if:

1) IK(d, n) has arcs of E′ as vertices.
2) For each arc (u, v) in E′, check the following: For

each w in (v, w) in E, if (v, w)∈E′, then add an α-
arc from vertex (u, v) to vertex (v, w) in IK(d, n);
otherwise, select z such that (z, w)∈E′, then add an
β-arc from vertex (u, v) to vertex (z, w) in IK(d, n).

The Kautz digraphs K(d,D) and K(d,D+1) are
called the predecessor and successor Kautz digraph of
IK(d, n), respectively. According to Definition 1, each
arc ⟨u, v⟩ in E′ can be denoted as a vertex labeled
uv=u1u2uDvD of IK(d, n) where u2u3...uD equals to
v1v2...vD−1. In this paper, we will not distinguish strictly
between an arc of K(d,D) and its corresponding vertex
in IK(d, n). In other words, we may use ⟨u, v⟩ to denote
a vertex of IK(d, n). It is clear that the out-degree of
any vertex of IK(d, n) is d. Note that the method used
to choose z from multiple candidates will be discussed
in Section 4.1.

According to Definition 1, it is straightforward to
design a quasi-Kautz digraph IK(d, n) through the fol-
lowing general construction procedure:

1) Discover the largest Kautz digraph K(d,D) satis-
fying that dD + dD+1 < n.

2) Construct a subset E′ of E(K(d,D)) such that
E′ = n and the constraint on E′ mentioned above
is satisfied.

3) Produce all vertices of IK(d, n) by presenting each
arc of E′ as a vertex. Then, establish links among
vertices according to the constraint mentioned in
Definition 1.

The general procedure can result in different quasi-
Kautz digraphs, with the same number of vertices, due
to a different arc set E′. The procedure ensures that
the minimum in-degree of nodes in the resulting quasi-
Kautz digraph is not less than 1. It alone, however,
is not enough to ensure that the quasi-Kautz digraph
can inherit desirable properties of the Kautz digraph.
Therefore, a method for careful selection of the arc set
E′ is necessary.
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Fig. 1. 1-factorization of a Kautz digraph K(2, 2).

3.2 Construction of quasi-Kautz digraph
Let G=(V,E) be a strongly connected digraph. An arc a
covers a vertex x if a is incident from x. An arc set E′⊂E
is an arc-covering of G if every vertex of G is covered by
at least one arc of E′. If |E′|=|V |, E′ is called a 1-arc-
covering. If ∀u∈V ; δ−G′(u)=δ+G′(u)=1 for G′=(V,E′), then
E′ is called a 1-factor of G. Hence, a 1-factor is a spanning
1-regular subdigraph and consists of cycles and possibly
loops. A digraph G has a 1-factorization if its arc set can
be partitioned into some arc-disjoint 1-factors. Theorem
1 proves that the Kautz digraph has a 1-factorization,
which will be used to derive a special construction
procedure of the quasi-Kautz digraph. Before in-depth
analysis, we first introduce several definitions as follows:

Definition 2: Let Lshift denote a binary operation
such that Lshift(x1...xD−1xD, i) = x1...xD−1x

′
D, where

0 ≤ i ≤ d−1. If (xD−1+i−d−1) < xD−1 < xD or xD−1 >
xD andxD−1 > xD + i, then x′

D = (xD + i)mod (d + 1).
Otherwise, x′

D = (xD + i+ 1)mod (d+ 1) [25].
Definition 3: Let Rshift denote a binary operation

such that Rshift(x1x2...xD−1xD, i)=x′
1x2...xD−1xD,

where 0≤i≤d−1. If x2+i−d−1<x1<x2 or x1>x2 and
x1−i>x2, then x′

1=(x1−i)mod (d+1). Otherwise,
x′
1=(x1−i−1)mod (d+1).
Definition 4: For any vertex x=x1x2...xD in K(d,D)

and 0≤i≤d−1, the left k-shift operation and right k-
shift operation, denoted as σi

k and σ−i
k , respectively, are

defined as follows:

σi
1(x) =

{
Lshift(x2...xDx1, i), ifx1 ̸= xD

Lshift(x2...xDx2, i), ifx1 = xD
(2)

σi
k = σi

k−1(σ
i
1) (3)

σ−i
1 (x) =

{
Rshift(xDx1...xD−1, i), ifx1 ̸= xD

Rshift(xD−1x1...xD−1, i), ifx1 = xD
(4)

σ−i
k = σ−i

k−1(σ
−i
1 ). (5)

For any vertex x, vertices σi
1(x) and σ−i

1 (x) are its
(i+1)th successor and predecessor, respectively. Further-
more, ⟨x, σi

1(x)⟩ and ⟨σ−i
1 (x), x⟩ denote its (i+1)th out-arc

and in-arc. In fact, the (i+1)th out-arc and in-arc of each
vertex are unique under the σi

1 and σ−i
1 operations.

Theorem 1: The arc set E(K(d,D)) can be partitioned
into d arc-disjoint 1-factors z0, ...,zd−1 under the cor-
responding left 1-shift operation σi

1 (0≤i≤d−1). That is,
K(d,D) has a 1-factorization.

Proof: Let any vertex, as the beginning point, take
a walk through K(d,D). For each vertex x under this

Algorithm 1 Distance(y,z)
Require: y and z are different d-ary Kautz identifiers with

length D + 1.
1: if D = 0 then
2: j ← (zD+1 − yD+1)mod (d+ 1)− 1
3: else
4: if min (yD+1, zD+1) < yD < max (yD+1, zD+1) then
5: if zD+1 > yD+1 then
6: j ← zD+1 − yD+1 − 1
7: else
8: j ← zD+1 − yD+1 + d+ 1
9: else

10: if zD+1 > yD+1 then
11: j ← zD+1 − yD+1

12: else
13: j ← zD+1 − yD+1 + d
14: return j

walk, it always walks along the (i+ 1)
th out-arc ⟨x, σi

1(x)⟩
under the left 1-shift operation σi

1. The walk will meet a
covered vertex after at most dD + dD−1 steps. This walk
will not meet any inner vertex because the (i+1)th in-arc
of each inner vertex in the walk is unique and has been
used by its predecessor in this walk. Therefore, this walk
will get back to the beginning vertex along its (i+ 1)

th

in-arc, and finally form a cycle.
As discussed above, each vertex of K(d,D) is covered

by at least one cycle under the operation σi
1. Let us

suppose that there is a common vertex y covered by a
pair of cycles under operation σi

1. It is easy to conclude
that the two cycles must also cover the vertex satisfying
the fact that its (i+1)th out-arc is incident on vertex y.
From the point of recursive operation, we can conclude
that the two cycles are identical. Therefore, each vertex
is covered by only one cycle under operation σi

1, and
cycles are mutually vertex disjointed. The cycles under
operation σi

1 form a spanning 1-regular subdigraph, and
produce a 1-factor zi of K(d,D). Furthermore, for any
vertex x of K(d,D), the arc covering it is different in dif-
ferent 1-factors. Therefore, those 1-factors are mutually
arc-disjoint, and K(d,D) has a factorization. Therefore,
Theorem 1 holds.

As shown in Figure 1, all arcs of a Kautz di-
graph K(2, 2) can be partitioned into two arc-disjoint
1-factors. The Kautz digraph K(2, 2) therefore has
a 1-factorization. According to Definition 1, the cor-
responding arc of each vertex x=x1...xDxD+1 of a
IK(d, n) is contained by a unique 1-factor in the pre-
decessor Kautz digraph of the IK(d, n). The iden-
tifer or label of that 1-factor can be calculated by
z(x)=Distance (σ0

1(x1x2...xD), x2x3...xD+1), where the
function Distance is given by Algorithm 1.

Theorem 2: The quasi-Kautz digraph IK(d, n) induced
by any k 1-factors of Kautz(d,D) is a d-regular digraph
for all 1 ≤ k ≤ d, where n = k(dD + dD−1).

Proof: We know that each vertex x of K(d,D) is cov-
ered by an arc ⟨x, σi

1(x)⟩ in 1-factor zi where 0 ≤ i < d.
According to Definition 1, the vertex labeled ⟨x, σi

1(x)⟩ is
incident on d vertices in a IK(d, dD + dD−1) induced by
a 1-factor zi. This proves that the quasi-Kautz digraph
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induced by zi is d-out-regular.
There is an α-arc from vertex ⟨σ−i

1 , x⟩ to vertex
⟨x, σi

1(x)⟩ in a quasi-Kautz digraph induced by a 1-
factor zi. Furthermore, the arc from vertex σ−j

1 (σi
1(x))

to vertex σi
1(x) is not in the zi where 0≤j≤d −

1 and j ̸=i. According to the proof of Theorem 1, we know
that there exists an arc ⟨σ−i

1 (σ−j
1 (σi

1(x))), σ
−j
1 (σi

1(x))⟩
in the zi. Thus, there exists d−1 β-arcs from ver-
tices ⟨σ−i

1 (σ−j
1 (σi

1(x))), σ
−j
1 (σi

1(x))⟩ to vertex ⟨x, σi
1(x)⟩.

In summary, each vertex ⟨x, σi
1(x)⟩ have d number of

in-neighbors, and the quasi-Kautz digraph induced by
the 1-factor zi therefore is a d-in-regular and d-regular
digraph.

The union of any k 1-factors also produces a d-regular
quasi-Kautz digraph IK(d, k(dD + dD−1)) according to
similar reasoning where 1 ≤ k ≤ d. The number of α-
arcs and β-arcs among the d out-arcs and d in-arcs of
each vertex are k and (d − k), respectively. Therefore,
Theorem 2 holds.

The general construction method of IK(d, n) does not
propose any method for the selection of the arc set E′.
Random selection cannot ensure that the connectivity of
a quasi-Kautz digraph is close to that of its predecessive
Kautz digraph. We will use the results of Theorems
1 and 2 to construct the arc set E′, and enable the
resulting IK(d, n) to achieve better connectivity. Specif-
ically speaking, the ideal arc set E′ and IK(d, n) can be
achieved by a special construction procedure based on
the 1-factorization of K(d,D) as follows:

1) In order to construct a IK(d, n) where k(dD +
dD−1) ≤ n ≤ (k + 1)(dD + dD−1), we start with
a d-regular quasi-Kautz digraph IK(d, dD + dD−1)
induced by the 1-factor z0 of K(d,D) through
Algorithm 5. The K(d,D) can be achieved from an
initial Kautz digraph by invoking this procedure
repeatedly.

2) We add vertices corresponding to all arcs of k − 1
1-factors z1,z2, ...,zk−1 to the d-regular digraph
produced in the first step, and then achieve a new
d-regular digraph IK(d, k(dD + dD−1)) by using
Algorithm 3 recursively.

3) We then add vertices corresponding to n− k(dD +
dD−1) arcs, denoted zk′

, of another 1-factor zk to
the new d-regular digraph by using Algorithm 3
recursively.

Note that Theorem 2 guarantees the correctness of the
first step. The last step is based on proper choice of the
added arcs as discussed in Section 4. In order to achieve
higher connectivity, the arc selection polices must make
the minimum in-degree of the final digraph as large as
possible. Theorem 3 shows the low and upper bounds
on the minimum in-degree of a resulting IK(d, n).

Theorem 3: Given any value of n, any quasi-Kautz
digraph IK(d, n) always holds that k≤δ−(IK(d, n))≤d
where k(dD+dD−1)≤n≤(k+1)(dD + dD−1) and 1≤k<d.

Proof: We know that the number of 1-factors of
K(d,D) used to produce the IK(d, n) is k + 1. For the
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Fig. 2. Two different shapes of a quasi-Kautz digraph
IK(2, 9).

sake of generality, we select the first k + 1 1-factors
z0,z1...,zk, but the result is the same for any k + 1 1-
factors. The special construction procedure can produce
the needed quasi-Kautz digraph mentioned in this theo-
rem. Theorem 2 can also guarantee that the quasi-Kautz
digraph induced by any k 1-factors of K(d,D) is a d-
regular digraph.

Adding any vertex x induced by zk′
has an effect

on one out-arc of at most d existing nodes. Node x
needs to inform its (i+1)th predecessor to update the
(i+1)th out-arc (a β arc) with a new α-out-arc incident
on node x where 0≤i≤k−1. As a result, the in-degree of
the node at the other end of the original (i + 1)th out-
arc of the (i+ 1)th predecessor of vertex x decreases by
one. If the arc corresponding to its (k+1)th predecessor
has been added previously, node x also informs this
predecessor to add an α-arc to itself. For k + 1≤i≤d−1,
other d−k−1 predecessors of node x are induced by 1-
factors zi and do not exist in IK(d, n). There, however,
exists a β arc from a node corresponding to an arc
⟨σ−k

1 (σ−i
1 (x2...xD+1)), σ

−i
1 (x2...xD+1)⟩ to the node x if

that arc is in zk′
.

According to the above analysis, the in-degree of
vertices induced by zk′

is at least k, but less than d,
except when k=d− 1 and arcs of zi form cycles. The in-
degree of vertices induced by previous k 1-factors should
not be less than d−1, and can reach d in some scenarios
such as in Figure 2 (b). Thus, k ≤ δ−(IK(d, n)) ≤ d, and
Theorem 3 holds.

4 MOORE DESIGN
We propose the following strategies to organize peers
into an efficient overlay network which can guarantee
the logarithmic network diameter and constant out-
degree of each peer. First, each peer obtains a logical
identifier from an identifier space, and uses its IP address
as a physical identifier. Second, each peer maintains
d neighbor peers according to a topology rule. Third,
any resource gets an identifier from an identifier space
which contains the identifier space of peers. Resources
are distributed to given peers based on the longest prefix
matching rule. Based on the above three strategies, we
propose a routing scheme to support different operations
effectively, such as resource distribution, resource query-
ing and topology maintenance.
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MOORE uses the quasi-Kautz digraph as its topology
structure, which evolves from an initial Kautz digraph
in a distributed manner. The Kautz digraph can be
constructed through many mature centralized methods,
so we do not consider related details in this paper.
In practice, MOORE needs to deal with the follow-
ing dynamic operations: topology expanding, topology
shrinking, node joining and departing. It is these op-
erations that drive the evolution of MOORE. We will
first propose essential algorithms to implement the two
dynamic operations of peers in this section, and then
explain how to expand and shrink the MOORE topology
corresponding to a Kautz digraph in Section 5.

4.1 Overview

The quasi-Kautz digraph inherits many desirable char-
acteristics of the Kautz digraph, and is more practical
than the Kautz digraph because its order can be of an
arbitrary order. Therefore, MOORE selects the quasi-
Kautz digraph as its topology in a dynamic environment.
There is an injection mapping from nodes in MOORE
to vertices in a corresponding quasi-Kautz digraph. The
topology of MOORE evolves from an initial Kautz di-
graph through dynamic operations of nodes and must
always satisfy the constraints mentioned in Definition 1.

As mentioned in the latter, the ith out-neighbor of an
existing node x=x1x2...xD is ⟨x2x3...xD, σi

1(x2x3...xD)⟩.
In practice, the ith desired out-neighbor might
not appear in MOORE. In this situation, node x
must select a substitute for its ith desired out-
neighbor from at most d existing nodes labeled
⟨σ−j

1 (σi
1(x2x3...xD)), σi

1(x2x3...xD)⟩ where 0≤j<d. Recall
that Definition 1 does not point out a method to choose
the substitute from multiple existing candidates. To
deal with this issue, MOORE chooses the node as a
substitute labeled σ

−z(x)
1 (σi

1(x2x3...xD)), σi
1(x2x3...xD)⟩

if it exists. Otherwise, MOORE chooses one randomly
from those candidates.

For any resource to be distributed in MOORE,
it is assigned a long d-ary identifier x=xlx2...xl ac-
cording to its value of single or multiple dimen-
sion attributes. We use two Kautz identifier spaces
Zl
d={x1...xl−1xl |xi∈{0, 1, ..., d − 1}} and Zm

d as the re-
sources identifier space and nodes identifier space of
MOORE. The length of a resource identifier should be
larger than that of a node identifier. If we fix the out-
degree of each node in MOORE, we can infer that
m=⌈lognn

d − log
(1+1/d)
d ⌉ and l=⌈lognr

d − log
(1+1/d)
d ⌉ where

nn and nr denote the maximum number of nodes and
resources in MOORE, respectively.

Assume the successor Kautz digraph of IK(d, n)
is K(d,D), a resource labeled x1x2...xD...xl is stored
and maintained by its preferred host labeled x1x2...xD

if this node exists in IK(d, n). Otherwise, the re-
source will be taken over by its second host labeled
⟨x1x2...xD−1, σ

s
1(x1x2...xD−1)⟩ in IK(d, n). In the re-

mainder of this paper, let s denote the identifier of

the 1-factor that was selected to induce the quasi-
Kautz digraph with the same order as K(d,D − 1).
MOORE can ensure that at least the second host of
each resource appears in MOORE. In general, the default
value of s is 0, and the second host of resource x is
labeled x1x2...xD−1x1 (if x1 ̸=xD−1) or x1x2...xD−1x1+1
(if x1=xD−1). For example, it is the node 210 that stores a
resource labeled 212120212 when the node 212 does not
appear in MOORE, as shown in Figure 2.

4.2 Mapping resources onto resources’ identifier
space
Each resource accessible through MOORE will receive
an identifier from the identifier space Zl

d. Different re-
sources are allowed to receive the same identifier. The
mapping of resources onto Zl

d can be implemented in
several ways. Literature [19] proposed a determinate
algorithm to generate an identifier with two as a base
for each resource. In reality, the base of a quasi-Kautz
digraph used by MOORE is often larger than two for
the sake of decreasing its diameter and improving its
connectivity. Therefore, this paper considers another
Kautz hash algorithm to generate an identifier with
any base for each resource. The Kautz hash uses three
parameters: key denotes the original identifier of the
resource, such as name or keyword; d and l denote the
base and length of expected Kautz strings, respectively.
Kautz hash is detailed below.

First of all, it produces a long binary string by hashing
the key according to a given consistent hash function, for
example SHA− 1. Then, it converts the resulting binary
string to a new string S0 with base d, and substitutes
all substrings consisting of any identical number with a
single one. If the length of S0 is less than l, it appends
i = 1 to key and achieves a new Kautz string Si with
base d, and then appends Si to S0. If the length of S0

is still less than l, it appends the value of i + 1 to key
and repeats the procedure again until the length of S0

becomes larger than l. Finally, the substring consisting
of the first l numbers of S0 from left to right is returned
as the identifier.

4.3 Mapping nodes onto nodes’ identifier space
In practice, MOORE starts with dm0+dm0−1 initial nodes
and forms a structured P2P network according to a
Kautz digraph K(d,m0), then enlarges or shortens its
scale through a series of dynamic operations at run time.
Thus, the nodes’ identifier space should not be a static
one compared to the resources’ identifier space. It will
be better if we start with an initial identifier space and
then enlarge or shorten it with the increase or decrease of
the number of nodes, respectively. Let Zm0

d denote the
initial identifier space where m0 < m. Each identifier
of this space will be allocated to a unique node. If all
identifiers of Zm0

d were allocated and new nodes apply to
participate in MOORE, the initial identifier space should
be extended to Zm0+1

d so as to allocate free identifiers to
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new nodes. Note that the new identifier space is a d
multiple of the old one and can be achieved according
to Definition 1.

As a direct result of this operation, the original identi-
fiers of initial nodes also need to be updated by the first
dm0+dm0−1 new identifiers induced by the 1-factor z0 of
K(d,m0), then the initial nodes form another d-regular
quasi-Kautz digraph IK(d, dm0 + dm0−1) according to
Algorithm 5. As discussed later, this process does not
cause additional overhead except dm0 + dm0−1 messages
to start the process. In order to maintain better topolog-
ical properties under a dynamic environment, we must
focus on the policy used to allocate identifiers to new
nodes, and this policy is equivalent to the arc choice
policy used by the special construction procedure of the
quasi-Kautz digraph mentioned above. Any arc choice
policy first takes the arcs of the second 1-factor z1, then
takes the arcs of the third 1-factor z2, and so on. But,
existing policies are different in the selection order of
arcs in each 1-factor.

The arc choice policy proposed in literature [25] sug-
gests to take arcs of one cycle in each 1-factor, then arcs
of another cycle, and so on. The random choice policy,
denoted as factorRandom, selects arcs randomly from a
given 1-factor. The difference between these two policies
is that the former can make the in-degree of more new
vertices reach k+1. The n denotes the number of existing
nodes in MOORE, and k satisfies that k(dm0 + dm0−1) ≤
n ≤ (k+1)(dm0+dm0−1). We propose an enhanced policy,
denoted as cycleSequence, which takes arcs of one cycle
along its direction continuously, then the second cycle,
and so on. Our new policy can make more vertices reach
k+1 in-degree than the policy proposed in literature [25].
The reason is that the (k + 1)

th predecessor of a newly
added arc has been added previously unless it is the first
selected arc of a cycle.

Recall that the in-degree of at most k nodes induced by
previous k 1-factors decreases by one once a new node
x joins MOORE. Here, the (k + 1)th-out-arc of existing
peer σ−i

1 (x) incidents on one of those k nodes, where
0 ≤ i ≤ k−1. As shown in Figure 2(a), the original β-out-
arc from vertex 012 to 021 will be updated with an α-out-
arc from vertex 012 to 121 once a vertex 121 participates
IK(d, n). Thus, the in-degree of vertex 021 decreases by
one. No existing arc choice policies focus on this prob-
lem. Therefore, we propose a different policy denoted
as inDegreePreserved to deal with it. The basic idea is
to allocate the identifier of the (k + 1)th predecessor of
existing nodes, once their (k+ 1)th in-arc is canceled by
the previous node’s adding operation, and reestablish its
(k + 1)th in-arc with an α-arc incident from its (k + 1)th

predecessor. This policy tries to preserve the in-degree-
regularity of nodes induced by previous k 1-factors, and
is very efficient if k = d− 1 or d = 2. Thus, MOORE can
achieve the best topological properties if it combines the
policies inDegreePreserved and cycleSequence.

On the other hand, an identifier allocated to a node
may become free if the node failed or departed from

Algorithm 2 Route(y, message, scheme)
Require: Identifier y is not less than x

1: z ← y
2: if the length of y is larger than D then
3: y ← y1y2...yD
4: if x = y or x1x2...xD−1 = y1y2...yD−1 then
5: Process the message locally, and return success.
6: x′ ← forward orientation(y)
7: if x′ ̸= null then
8: return x′.Route(z,message, scheme)
9: else

10: return failure to the source node.

forward orientation(y)
1: Let u be the largest integer such that xD−u+i = yi

for 1 ≤ i ≤ u, and result← null
2: for i = 0 to d do
3: w ← routingtalbe[i].identifier
4: if u = 0 and w = y then
5: return w
6: else if wD−u−1+i = yi for 1 ≤ i ≤ u+ 1 then
7: result← w
8: if result = null and scheme = resource then
9: return ⟨x1x2...xD−1, σ

s
1(x1x2...xD−1)⟩

10: else
11: return result

the network and did not recover during a given time
interval. All arc choice policies should give these kinds
of identifiers priority when they allocate an identifier to a
new node. If this identifier is induced by previous zi for
0 ≤ i ≤ k−1, this operation is helpful to preserve the de-
sirable structure of the backbone subnetwork consisting
of nodes induced by previous k 1-factors. Otherwise, this
operation can make the in-degree of more nodes reach
k + 1 for the cycleSequence policy.

4.4 Routing scheme
In order to route messages to destinations correctly, each
node x must establish links with selected neighbors and
construct a routing table when it joins MOORE using
Algorithm 3. In addition, each node should update its
links and routing table when other nodes join, depart
or fail. The routing table consists of d entries, and each
entry includes the identifier and address (such as IP and
port number) of one neighbor node. Furthermore, node
x may initiate a lookup message to find a given resource
or node with identifier y, or initiate an insert message to
distribute its resource with identifier y to a responsible
node. We propose Algorithm 2 to route those kinds of
messages to their destinations along the shortest paths.

Fiol proposed a method to achieve a short path from
x to y in [28]: find the largest suffix u of x that coincides
with a prefix of y, then walk towards a neighbor z of x
such that its largest suffix v coincides with a prefix of
y and the length of v is larger than that of u. Note that
the exhibited path does not necessarily have the shortest
length due to the existence of β-out-arcs. As an example,
node 021 needs to route to node 012 along the short path
021 → 210 → 101 → 012, as shown in Figure 2(a). The
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Fig. 3. The topology of MOORE before and after adding
a peer 121.

shortest path, however, should be 021 → 012, resulting
from a β-out-arc incident from node 021. In order to deal
with this problem, Algorithm 2 will check whether there
is a routing entry corresponding to node y if the length of
u is zero. As shown in our simulation results, Algorithm
2 can achieve low congestion as the long path routing
scheme does [10], [19].

Algorithm 2 uses three parameters: y denotes the
identifier of a aimed resource or node; message denotes
the real message needed to be routed; scheme denotes
the type of message, and can be resource (lookup or
insert resource) or node (find the address of node). Recall
that the resource distribution policy of the quasi-Kautz
digraph is different from that of the Kautz digraph,
because any resource has two possible exclusive desti-
nation nodes. Therefore, if scheme = resource and the
method forward orientation in Algorithm 2 does not
find the node whose identifier is a prefix of the identifier
of an aimed resource, it will forward the message to
another destination node defined by the resource dis-
tribution policy mentioned above.

4.5 Node joining

To ensure that our routing scheme executes correctly
after a new peer participates MOORE, all routing entries
of each peer must keep up to date. MOORE handles
this issue by a series of local operations that each new
peer runs when it joins. The joining procedure includes
receiving a node identifier, redistributing resources, and
updating routing tables. These operations can be imple-
mented by Algorithm 3.

As for most P2P networks, we assume there are
some existing nodes as entry points of MOORE, which
can receive and process the node joining message. Let
y = y1y2...yD+1 denote an entry point of MOORE. Before
participating MOORE, a new peer consults node y for its
logical identifier x = x1x2...xD+1 and the identifier k of
a current 1-factor according to the management policy
of nodes’identifier space. In reality, there exists at least
two cases of node joining operations. The first case is
z(x) = k, which means that the new node belongs to
the current 1-factor zk. The second case is z(x) < k,
which means that the new node belongs to the previous
1-factor and a node with the same identifier has joined
MOORE, but failed or departed.

Algorithm 3 Node joins(x,y,k)
1: k ← z(x)
2: for i = 0 to d do
3: if i ≤ k then
4: Node y finds the address of node labeled z. Then

node x adds ⟨z, address, α⟩ as its (i + 1)th routing
entry, and establishes a link to this node, where z =
⟨x2x3...xD+1, σ

i
1(x2x3...xD+1)⟩,

5: else
6: Node x asks node y to find the address of node z

labeled ⟨σ−k
1 (σi

1(x2x3...xD+1)), σ
i
1(x2x3...xD+1)⟩

7: if node z does not exist then
8: Node x asks node y to find the address of a node

z labeled ⟨σ−j
1 (σi

1(x2x3...xD+1)), σ
i
1(x2x3...xD+1)⟩.

The random integer j satisfies that 0 ≤ j < k and
node z exists.

9: Node x adds ⟨z, address, β⟩ as the (i + 1)th entry of
its routing table, and establishes a link to node z.

10: for i = 0 to d do
11: if i ≤ k then
12: w ← ⟨σ−i

1 (x1x2...xD), x1x2...xD⟩
13: else
14: w ← ⟨σ−k

1 (σ−i
1 (x2...xD+1)), σ

−i
1 (x2...xD+1)

15: Node w updates one original β link with an α or β link
incident on node x, then updates its routing table.

16: Node x gets resources satisfied that x is their prefix of
identifier from node ⟨x1x2...xD, σs

1(x1x2...xD)⟩.

In both cases, node x needs to find its successors for
establishing out-links and a routing table, then inform
at most d existing predecessors to update their links
and routing tables, and finally take over its responsible
resources from an existing node. The details have been
proposed when proving Theorem 3. Given an integer
k such that k(dD + dD−1) ≤ n ≤ (k + 1)(dD + dD−1),
we know that the (i+ 1)

th predecessor and successor of
node x exist for 0 ≤ i ≤ k− 1. Furthermore, its (k+ 1)th

successor does not exist except that node x is mapped
to the last arc of the current cycle, and its (k + 1)th

predecessor exists except that node x is mapped to the
first arc selected from a cycle. The other jth successor of
node x does not exist for k + 1 < j ≤ d, and it needs
to find a substitute from nodes belonging to 1-factor
zk, even from nodes belonging to previous 1-factors,
in order to keep a constant out-degree. The other jth

predecessors of node x also do not exist for k+1 < j ≤ d.
Therefore, node x should find a substitute for its jth

predecessor for k+1 < j ≤ d from nodes belonging to 1-
factor zk. Node x, however, does not select substitutes
for predecessors from nodes belonging to previous 1-
factors in order to not increase the in-degree of nodes
belonging to previous 1-factors.

The resulting topology of MOORE after adding a new
node can be represented pictorially and an example is
illustrated in Figure 3. If a node 121 joins MOORE, whose
topology is shown in Figure 3 (a), the resulting topology
of MOORE is plotted by Figure 3 (b).

4.6 Node departing
The correctness and effectiveness of MOORE relies on
the fact that predecessors and successors of each node
are up to date. An incorrect neighbor might increase
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Algorithm 4 Node departs (x, k)
1: if z(x) < k then
2: y ← findSubstitute(x)
3: update(y, k,z(x))
4: Node x transfers its resources and routing table to

node y, then departs from MOORE. Node y updates its
identifier, routing table, and links with that of node x,
and informs in-neighbors about its change of address.

5: else
6: Node x transfers its resources to node corresponding to

arc ⟨y1y2...ym−1, σ
s
1(y1y2...ym−1)⟩ before departing.

7: update(x, k,z(x))

update(z, k, l)
1: for i = 0 to d do
2: if i < k then
3: w ← ⟨σ−i

1 (z1z2...zD), z1z2...zD⟩
4: Informs node w to update the link to

node x with a new β link to node
⟨σ−i

1 (z2z3...zD+1), z2z3...zD+1⟩.
5: else
6: w ← ⟨σ−l

1 (σ−i
1 (z2...zD+1)), σ

−i
1 (z2...zD+1)⟩

7: Informs node w to update the link to
node x with a new β link to node
⟨σ−j

1 (z2z3...zD+1), z2z3...zD+1⟩, where j is a
random integer satisfied 0 ≤ j < k such that
the new destination node exists.

the delay of routing a message, and even fail to deliver
messages correctly. Therefore, a node departing volun-
tarily should repair the topology through the following
procedures before it leaves.

Let x = x1x2...xD+1 denote a node departing from
MOORE, and k denote the identifier of the current
1-factor. In practice, there exist at least two cases of
node departing operations. The first case is z(x) = k,
which means that node x belongs to the current 1-
factor zk. z(x) < k is another case, which means that
node x belongs to the previous 1-factors. The node
departing operation harms the topology structure and
results in unsuccessful message routing. Algorithm 4
can compensate for the negative impact of the node
leaving operation. For example, If node 121 departs from
MOORE, whose topology is shown in Figure 3 (b), the
resulting topology of MOORE is plotted by Figure 3 (a).

In the first case, node x needs to inform its in-
neighbors to update the link incident on node x, and
transfer its resources to another responsible node defined
by the resource distribution policy. In the second case,
node x needs to find a node y to replace it, and inform
the in-neighbors of node y to update related links and
routing entries. Then, node y takes over the identifier,
resources, links and routing table of node x and its
original identifier becomes free. Finally, node y updates
its links according to the new routing table and informs
its in-neighbor about the change of its address. Node
y should be selected from nodes belonging to 1-factor
zk, then 1-factor zk−1, and so on. This policy can
preserve the desired topology of a backbone subnetwork
consisting of nodes belonging to previous 1-factors.

5 TOPOLOGY ADJUSTMENTS

5.1 Problem statements

In general, the topology of MOORE is a quasi-Kautz
digraph IK(d, n) where the number of nodes, n, is
covered by a unique range [dD + dD−1, dD+1 + dD). In
practice, the topology becomes a Kautz digraph K(d,D)
if n reaches the upper boundary of this range. In this
situation, if other nodes apply to join MOORE, it needs
to expand the topology to a new quasi-Kautz digraph
whose order equals to the lower boundary of a new
range [dD+1 + dD, dD+2 + dD+1). If the number of nodes
reaches dD+2 + dD+1, a quasi-Kautz digraph becomes a
Kautz digraph and is ready to be expanded further.

It is easy to derive a quasi-Kautz digraph IK(d, dD+1+
dD) from its predecessive Kautz digraph K(d,D) by
using Definition 1 with the 1-factor z0 of K(d,D) as the
arc set E′. To expand the topology of MOORE similarly,
we propose two strategies to update logical identifier
of each node and associated algorithms to update out-
neighbors and routing tables of each node.

For the first strategy, each node x=x1x2...xD updates
its logical identifier with ⟨x, σs

1(x)⟩ such that the new
identifier and the original identifier have a common
prefix with length D. This strategy is also called the
prefix-preserved expansion strategy. For the second strategy,
each node x updates its logical identifier with ⟨σ−s

1 (x), x⟩
such that the new identifier and the original identifier
have a common suffix with length D. This strategy is
also called the suffix-preserved expansion strategy. For the
two strategies, existing nodes form the same topology
structure. As analyzed later, the two strategies, however,
produce different network overhead during the topology
expansion process.

The number of nodes in MOORE sometimes decreases
to the lower boundary of the range [dD + dD−1, dD+1 +
dD) in practice. In this situation, if some existing nodes
want to leave, MOORE needs to shrink its topology to
its predecessive Kautz digraph. If the number of nodes
in MOORE decreases to dD−1 + dD−2, the quasi-Kautz
digraph might be shrunken further. The shrink operation
can be performed by updating the logical identifier, out-
neighbors, and routing table of each existing node. There
are two possible strategies to update logical identifiers
of existing nodes. For the prefix-preserved shrink strategy,
each existing node x=x1x2...xD−1xD updates its original
logical identifier with x1x2...xD−1 such that the new and
original identifiers have a common prefix with length
D − 1. For the suffix-preserved shrink strategy, each node
x updates its logical identifier with x2x3...xD.

5.2 Prefix-preserved adjustment strategy

The prefix-preserved expansion strategy can be imple-
mented by Algorithm 5. The parameter s in this al-
gorithm denotes the identifier of the 1-factor that was
selected to induce the quasi-Kautz digraph with the
same order as K(d,D), where the default value of s is 0.
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Algorithm 5 Prefix-preserved Expansion (K(d,D), s)
Require: K(d,D) is a d-regular Kautz digraph with diameter

D.
1: for each node x labeled x1x2...xD in K(d,D) do
2: x.label← ⟨x, σs

1(x)⟩
3: Node x constructs a temporary routing table.
4: for i = 0 to d− 1 do
5: if s = i then
6: z = z1z2...zD+1 ← ⟨σs

1(x), σ
s
2(x)⟩

7: address← x.routing[s].address
8: Node x adds ⟨z, address, α⟩ as the (i+ 1)th entry

of the temporary routing table.
9: else

10: z = z1z2...zD+1 ← ⟨σ−s
1 (σi

1(σ
s
1(x)), σ

i
1(σ

s
1(x))⟩

11: address← Route(σ−s
1 (σi

1(σ
s
1(x)), ,node))

12: Node x adds ⟨z, address, β⟩ as the (i+ 1)th entry
of the temporary routing table.

13: for each node x in K(d,D) do
14: Updates its routing table with the temporary routing

table, then updates links according to new routing table.

For each node x = x1x2...xD, it constructs a temporary
routing table by the following operations:

1) Updates its logical identifier with ⟨x, σs
1(x)⟩.

2) Updates the logical identifier of its (s + 1)th out-
neighbor node σs(x) with ⟨σs

1(x), σ
s
2(x)⟩.

3) Updates the logical identifier of its
(i + 1)th out-neighbor node σi(x) with
⟨σ−s

1 (σi
1(σ

s
1(x)), σ

i
1(σ

s
1(x))⟩, where 0 ≤ i < d

and i̸=s.
4) Discovers the address of a node which up-

dates its logical identifier σ−s
1 (σi

1(σ
s
1(x)) with

⟨σ−s
1 (σi

1(σ
s
1(x)), σ

i
1(σ

s
1(x))⟩, where 0 ≤ i < d and

i̸=s.
For 0 ≤ i < d and i̸=s, the fresh and original (i +

1)th out-neighbors of node x are not the same node, and
hence node x must discover the physical address of its
new out-neighbor by initiating a query. The new (s+1)th

out-neighbor of node x is just the original (s+ 1)th out-
neighbor. Therefore, node x is not necessary to send a
query for the physical address of its new (s + 1)th out-
neighbor. After all existing nodes finish these operations,
each of them update its routing table with the temporary
routing table, and finally updates links according to its
new routing table. As an example, Figure 4 (a) becomes
Figure 4 (b) through this algorithm. Theorem 4 proves
the network overhead of this type of topology expansion
strategy.

Theorem 4: In the case of the prefix-preserved expan-
sion strategy, the expansion of the entire overlay network
causes n× (d− 1) logd n additional network overhead.

Proof: As mentioned above, each node must explore
physical addresses of d− 1 neighbors by initiating d− 1
query messages. It is clear that each of these messages
will be routed to a destination within at most logd n hops.
Therefore, the total number of messages caused by ex-
panding the overall topology is at most n×(d−1) logd n.
Thus, Theorem 4 holds.

In contrast to expanding the overlay, MOORE shrinks
its topology when the number of existing nodes de-
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Fig. 4. The topology of MOORE before and after expand-
ing the topology if using the prefix-preserved expansion
strategy.

creases to the order of the predecessive Kautz digraph.
For the prefix-preserved shrink strategy, each node x =
x1x2...xD−1xD constructs a temporary routing table by
the following operations:

1) Updates its logical identifier with x1x2...xD−1.
2) Updates the logical identifier y1y2...yD−1yD of its

(i+1)th out-neighbor node with y1y2...yD−1 where
0 ≤ i < d.

3) Discovers the physical address of a node which
updates its logical identifier y1y2...yD−1yD with
y1y2...yD−1.

For 0 ≤ i < d, the new and original (i+ 1)th neighbor
of node x are not necessarily the same node. Actually,
only one neighbor of node x does not change after
performing the topology shrink operation. The node x
therefore must discover the physical address of each
new neighbor by routing a query to the node. After
all existing nodes finish those operations, each of them
updates its routing table with the temporary routing
table, and finally updates links according to its new
routing table. As an example, Figure 4 (b) becomes
Figure 4 (a) after performing this type of topology shrink
operation. Theorem 5 proves the network overhead of
this operation.

Theorem 5: In the case of the prefix-preserved shrink
strategy, the shrink of the entire overlay network results
in n× (d− 1) logd n additional network overhead.

Proof: As discussed above, each node must explore
physical addresses of d−1 new neighbors by initiating
d−1 query messages. It is clear that each of these mes-
sages will be routed to a destination within at most
logd n hops. Therefore, the total number of messages
caused by expanding the overall topology is at most
n× (d−1) logd n. Thus, Theorem 5 holds.

5.3 Suffix-preserved adjustment strategy
As mentioned in Theorems 4 and 5, the topology expan-
sion and shrink operations based on the prefix-preserved
strategy suffer from large network overhead. To address
this problem, we adopt the suffix-preserved strategy. In
this situation, the expansion of the entire topology is
implemented by the following local operations at each
existing node x=x1x2...xD in MOORE.

1) Updates its logical identifier with ⟨σ−s
1 (x), x⟩.
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2) Updates the logical identifier of its (s + 1)th out-
neighbor node σs

1(x) with ⟨x, σs
1(x)⟩.

3) Updates the identifier of its (i + 1)th out-neighbor
node σi

1(x) with ⟨σ−s
1 (σi

1(x)), σ
i
1(x)⟩, where 0 ≤ i <

i and i̸=s.
After finishing this kind of topology expansion, re-

sources at each node must be transferred to another
node if we keep on distributing resources based on the
longest-prefix matching policy. To avoid costly move-
ments of resources among nodes during the process of
expanding the topology, MOORE distributes resources
according to the longest suffix matching policy instead
of the longest prefix matching policy.

A resource labeled xl...xD...x2x1 is stored and
maintained by its preferred host labeled xD...x2x1

if this node exists in MOORE. Otherwise, the re-
source will be taken over by its second host labeled
⟨σ−s

1 (xD−1...x2x1), xD−1...x2x1⟩. The topology construc-
tion and maintenance strategies ensure that at least the
second host of each resource appears in MOORE. In this
case, Theorem 6 shows that each resource stays at the
original node after expanding the overall topology.

Theorem 6: In the case of the suffix-preserved expan-
sion strategy, the expansion of the entire network does
not cause additional network overhead, except dD+dD−1

messages to start the process.

Proof: In the case of MOORE based on a Kautz
digraph K(d,D), each resource xl...xD...x2x1 is hosted
by its preferred node x=xD...x2x1. After expanding the
overall topology of MOORE, node x updates its iden-
tifier with ⟨σ−s

1 (x), x⟩ = xD+1xD...x2x1. Node x is still
the preferred host of resources whose identifiers have a
suffix xD+1xD...x2x1, and becomes the second host of
other resources stored in it before expanding the topol-
ogy. Therefore, each resource stays at the original node
after expanding the topology, and does not introduce any
overhead.

On the other hand, each node x=xD...x2x1 main-
tains links to its out-neighbors xD−1...x1α where
α∈{0, 1, 2, ..., d}−{x1}. After expanding the topology, the
node obtains a new logical identifier ⟨σ−s

1 (x), x⟩ =
xD+1xD...x2x1, and maintains links to nodes x′

D...x2x1β,
where β∈{0, 1, 2, ..., d} − {x1} and the value of x′

D

obeys to the topology construction rule of the quasi-
Kautz digraph mentioned above. For ∀β∈{0, 1, 2, ..., d}−
{x1}, the identifer of an out-neighbor x′

D...x2x1β of
node xD+1xD...x2x1 is xD−1...x2x1β before expand-
ing the topology. It is clear that all out-neighbors of
node xD+1...x2x1 are the same out-neighbors of node
xD...x2x1 although their logical identifiers are updated.

In other words, the links maintained by each node
do not change, and no network overhead is further
incurred. For example, node A is labeled 21, and has out-
neighbor B with identifier 12 and C with identifier 10,
before expanding the entire topology, as shown in Figure
5 (a). After expanding the entire topology, the identifiers
of node A, B and C are updated as 021, 012, and 210,
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Fig. 5. The topology of MOORE before and after expand-
ing the topology if using the suffix-preserved expansion
strategy.

respectively. As shown in Figure 5 (b), the out-neighbors
of node A are still the nodes B and C. Thus, Theorem 6
holds.

In the case of the suffix-preserved strategy, the shrink
of the entire topology is implemented by the following
local operations at each existing node x = x1x2...xD.

1) Updates its logical identifier with x2x3...xD.
2) Updates the logical identifier y1y2...yD of its (i+1)th

out-neighbor node with y2y3...yD where 0 ≤ i < d.
3) Discovers the physical address of a node which up-

dates its logical identifier y1y2...yD with y2y3...yD.

After all existing nodes finish those operations, each
of them updates its routing table with the temporary
routing table, and finally updates links according to its
new routing table. The longest suffix matching policy of
resource distribution ensures that each resource stays at
the original node after shrinking the overall topology.

Theorem 7: In the case of the suffix-preserved shrink
strategy, the shrink of the entire overlay network does
not cause additional network overhead, except dD+dD−1

messages to start the process.

Proof: Each existing node x=xD...x2x1 maintains
links to its out-neighbors x′

D−1...x1α where
α∈{0, 1, 2, ..., d}−{x1} and the value of x′

D obeys
Definition 1. After shrinking the topology, the
node obtains a new logical identifier xD−1...x2x1,
and maintains links to nodes xD−2...x2x1β, where
β∈{0, 1, 2, ..., d} − {x1}. For ∀α∈{0, 1, 2, ..., d} − {x1},
the identifier of an out-neighbor x′

D−1...x2x1α of
node x=xD...x2x1 is updated with xD−2...x2x1α after
shrinking the topology. It is clear that all out-neighbors
of node xD−1...x2x1 are the same out-neighbors of node
xD...x2x1 although their logical identifiers are updated.

In other words, the links maintained by each node
do not change, and no network overhead is further
incurred. For example, node A is labeled 021, and has
out-neighbor B with identifier 012 and C with identifier
210 before shrinking the entire topology, as shown in
Figure 5 (b). After shrinking the entire topology, the
identifiers of node A, B and C are updated as 21, 12,
and 10, respectively. As shown in Figure 5 (a), the out-
neighbors of node A are still the node B and C. Thus,
Theorem 7 holds.
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Fig. 6. The in-degree distribution of IK(4, 7680) and
IK(4, 18000).

6 ANALYSIS AND EVALUATION

We use PeerSim to implement MOORE. PeerSim is a P2P
simulation framework aimed at developing and testing
any kind of P2P protocols in a dynamic environment.
Our simulations are cycle-based, and the MOORE topol-
ogy with any order is evolved from the smallest Kautz
digraph K(d, 1) through those dynamic operations of
nodes mentioned above. In this section, we will evaluate
the following characteristics of MOORE: degree distri-
bution, diameter, average routing path length, and con-
gestion. The value of each characteristic under different
network configurations is the average value of a sample
achieved from at least 100 rounds of simulations.

6.1 Degree distribution of MOORE

Property 1: MOORE is d-regular and has a constant
degree if its order equals to k multiple of n0 for 1 < k ≤ d
where n0 denotes the order of its predecessor Kautz
digraph. Otherwise, it is d-out-regular and has a constant
degree. Its index of expandability is not larger than
δ−(IK(d, n)).

Proof: The proof has been proposed in Section 3.

Theorem 3 proposes the bound on its minimum in-
degree. In this section, we focus on the in-degree dis-
tribution of MOORE with order 7680 and 18000 un-
der node identifier choice policies factorRandom and
cycleSequence.

Figure 6 shows that the in-degree of most nodes is
adjacent to d, and that of the remaining nodes is close to
the trail of its in-degree distribution figure. The in-degree
of more nodes are close to d and far away from the
trail of its in-degree distribution if MOORE adopts the
cycleSequence policy rather than factorRandom policy.
Thus, cycleSequence is more suitable to MOORE for
improving its connectivity and robustness, especially
if the order is close to that of its predecessor Kautz
digraph.

We know that the order of IK(4, 7680) and
IK(4, 18000) is covered by ranges (n0, 2n0] and
[3n0, 4n0], where n0 denotes the order of K(4, 6) and
4n0 equals that of K(4, 7). Thus, the least in-degree of
IK(4, 7680) and IK(4, 18000) are 1 and 3 according to
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Theorem 3, as shown in Figure 6. Furthermore, the in-
degree of most nodes is around d and that of few nodes
is around the tail of its in-degree distribution figure, if
the order of MOORE is adjacent to any multiple of n0.

6.2 Diameter and path length distribution of MOORE
In an overlay network, the length of a routing path
denotes the number of hops from the source to the
destination along the routing path.

Property 2: Given a MOORE with arbitrary order n
and out-degree d, its diameter is Dl = ⌈logd n

d+1 + 1⌉.
Proof: First, let’s calculate D such that dD−2(d+1) <

n < dD−1(d+ 1). Thus, the length of the node identifier
must be D, and we can always find a pair of vertices at
distance D. Thus, Dl = ⌈logd n

d+1 + 1⌉.
According to the well known results of the or-

der/diameter problem, we know that Dl is the small-
est diameter for any number of vertices n where
dD−1+dD−2≤n≤dD+dD−1. A lookup for a resource or
node initiated by any node can reach its destination in
O(logd n) hops. The same result holds for publishing
resources.

We evaluate the diameter and average path length
of MOORE in different scales (from 256 peers to 22528
peers) and compare it with other constant degree di-
graphs with the same degree 4, such as 2-dimensional
CAN, 3-dimensional CAN, 4-dimensional butterfly, de
Bruijn, and Kautz digraph. In each experiment, we
sample at least n′=⌈n/2⌉ nodes randomly, and let each
sampled node launch a routing to other n−1 nodes, then
analyze the average path length over n′(n−1) routings.

As shown in Figures 7 and 8, the curves of butterfly, de
Bruijn and Kautz digraphs are dashed lines or discrete
points since their orders are discrete sequences, while
that of MOORE and CAN are solid lines because of their
arbitrary orders. In Figure 7, the diameter of MOORE
is less than 1.2 log4 n, and that of butterfly and CAN
at the whole order axis. In Figure 8, the average path
length of MOORE is also less than 1.2 log4 n, and that
of butterfly and CAN at the whole order axis. In the two
figures, we do not compare MOORE with k-dimensional
CCC directly since the degree of CCC is 3 irrespective
of the value of k. In reality, the diameter and average
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path length of MOORE with out-degree 3 are also less
than that of CCC, respectively. Furthermore, the average
path length of MOORE under different scales is trivially
different if the scales are covered by an identical range,
such as [320,1280), [1280,5120), [5120,20480) in Figure 8.

Property 3: With the shortest path routing scheme,
MOORE can achieve low congestion.

Proof: Figure 9 shows the distribution of the routing
path length of IK(4, 12800) and IK(4, 10240). We can
observe that more than 90% of routing path lengths are
close to the diameter of MOORE. We also find that there
exists a similar result under any scale of MOORE. This is
closer to the result of the long path routing scheme used
by [10], [19]. Therefore, it is reasonable that MOORE
also can achieve the similar low congestion characteristic
discussed by Xu et al. [12] and Li et al. [19], although
our algorithm adopts a shortest path routing scheme.

Property 4: Messages caused by node joining and de-
parting operations are at most 2.5d logd n and (2.5d +
1) logd n. Only d and 2d nodes need to update routing
tables when dealing with a new node and a departed
node, respectively.

Proof: Recall that Algorithm 3 must find d out-
neighbors in order to construct its routing table, and
inform d in-neighbors to update their routing table.
Algorithm 4 may need to find a substitute node first.
Therefore, the former part of Property 4 holds because
the routing length is less than 1.2 logd n, and the latter
part also holds according to the two algorithms.

Ideally there should also be a discussion on one of the
biggest problems of P2P systems, i.e. performance under
churn. This is partially addressed through the discussion
in section 5; though, which level of churn would still be
sustainable for MOORE is not being discussed.

7 CONCLUSION

MOORE is the first efficient structured P2P network
based on the quasi-Kautz digraph, and is O(logd n) in
diameter with a constant node out-degree. It constructs
an overlay digraph for all network sizes and any con-
stant degree, and achieves optimal diameter, high per-
formance, good connectivity and low congestion. In the
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future, we will improve MOORE to support more types
of queries such as range and multi-attribute queries, and
consider the locality of the physical network to reduce
latency.
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